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ABSTRACT

Transition period (±3 wk around calving) diseases 
are prevalent in dairy systems. In this review we de-
scribe the physiological and behavioral changes experi-
enced by cows during the transition period and during 
the dry period leading up to this. Our narrative review 
examines risk factors associated with these diseases 
in zero-grazing and grazing systems. The available 
research indicates that cows in these 2 systems experi-
ence similar incidences of transition diseases, and that 
low or high BCS and lameness are key manageable risks 
associated with both systems. Other cow- and herd-
level risk factors identified in this review are parity, 
breed, and seasonal variability in disease incidence. 
Some risks appear to arise earlier in the dry period, 
outside what is normally considered the transition pe-
riod; we recommend that future studies of transition 
period diseases should consider the entire dry period. 
We also encourage new work on measuring the effect of 
intervention strategies during late lactation on transi-
tion period diseases.
Key words: feeding behavior, disease incidence, risk 
factors, periparturient period

INTRODUCTION

Dairy farms range from pastoralist-extensive to in-
tensive indoor housing systems (Robinson et al., 2011). 
Intensive systems are typically designed to maximize 
milk output per cow or per area with the majority of 
nutrition provided as either a TMR (a balanced mix-
ture of forages, grains, and minerals) or with grazing 
as the primary forage source with variable dietary 
supplementation. Extensive systems are typically less 

dependent on the use of supplemental grain, relying 
more on grazing, or housed animals fed grass that is 
cut and carried to the animals. In this review we will 
focus solely on intensive systems that differ in the ways 
cows are housed; we refer to these as grazing and zero-
grazing systems. Different production systems will have 
unique challenges. For example, cows housed indoors 
year-round may be exposed to poor lying surfaces, 
whereas cows kept outdoors may be exposed to rain, 
mud, and extreme temperatures.

Calving is a complex event and involves several physi-
ological and behavioral changes that can affect energy 
balance and immune function (Bell, 1995; Grummer 
et al., 1995, 2004; Goff and Horst, 1997; Bradford et 
al., 2015). Unfortunately, cows are at high risk of dis-
ease in the weeks immediately before and after calving 
(Ingvartsen et al., 2003), resulting in declines in both 
milk and reproductive performance and increasing cull-
ing risk (Carvalho et al., 2019). This period around 
calving has historically been labeled as “the transition 
period” and is considered in the scientific literature to 
begin 3 wk before calving and end about 3 wk after 
calving (Grummer et al., 1995). However, there is evi-
dence that at least some physiological changes related 
to calving and the diseases that follow may start much 
earlier than that (e.g., Dervishi et al., 2018). To date, 
the majority of research has focused on high producing 
Holstein cows in zero-grazing systems. However, with 
increasing concerns over the long-term social sustain-
ability of zero-grazing systems (Beaver et al., 2020), we 
review literature regarding the transition period and 
the challenges to cow health for both zero-grazing and 
grazing systems.

This narrative review consists of 3 parts. First, we 
summarize the current understanding of the physi-
ological and behavioral changes during the transition 
period. Second, we critically review the available litera-
ture on the epidemiology of transition period diseases 
highlighting the main risk factors. Finally, we compile 
the literature on both grazing and zero-grazing systems 
and identify gaps for each system. For the purposes of 
this review we excluded hybrid systems as it is likely 
that they share the risks and benefits of both systems.
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WHAT IS THE TRANSITION PERIOD?

Genetics, nutrition, and management are the main 
drivers for increased milk production in modern dairy 
cows (Baumgard et al., 2017). The genetic selection for 
milk yield has resulted in cows that have an improved 
ability to partition energy and protein from the diet 
and body reserves to support milk production instead 
of accumulating body mass (Veerkamp, 1998). The rate 
of milk secretion during the first 2 to 3 mo after calving 
increases rapidly while the rate of DMI increases at 
a lower rate, reaching a maximum several weeks after 
peak milk production (Coppock, 1985). Thus, during 
these first weeks of lactation, the cow needs to be able 
to mobilize energy (and protein) from body reserves to 
compensate for the gap between intake and output.

To prepare for parturition and the onset of lacta-
tion, a combination of metabolic events in the days 
before calving trigger the onset of lactation and milk 
production (Bell, 1995). Behavior also changes at this 
time, including reduced DMI (see reviews: Grant and 
Albright, 1995; Sepúlveda-Varas et al., 2013); when 
dietary energy intake fails to supply the energy needed 
to support the high levels of milk production cows will 
experience negative energy balance (NEB; see review: 
Grummer, 1995). These changes, in conjunction with a 
complex inflammatory response (see review: Bradford 
et al., 2015), contribute to the high incidence of meta-
bolic and infectious diseases in this period (Ingvartsen 
et al., 2003) in both grazing (e.g., Olmos et al., 2009; 
Compton et al., 2014) and zero-grazing systems (e.g., 
Daros et al., 2020).

As described in the following subsections, there are 
multiple changes happening during this period, making 
it impossible to pinpoint a specific time for the start of 
the transition period.

Physiological Changes During the Transition Period

Due to the plentiful literature reviewing the physi-
ological changes during the prepartum period, we only 
briefly describe key points and refer the reader to other 
literature.

Hormonal profiles are altered in the week before 
calving, with the majority of the acute changes tak-
ing place in the days before calving (Vazquez-Añon et 
al., 1994; Bell, 1995). Homeorhetic mechanisms that 
control pregnancy and the onset of lactation increase 
levels of circulating growth hormone and inhibit the 
production and tissue responsiveness to insulin and 
insulin-like growth factor-1 (Bauman and Currie, 1980; 
De Koster and Opsomer, 2013). These hormones trig-
ger mobilization of body reserves from adipose tissues 
(Tucker, 2000; Renaville et al., 2002; De Koster and 

Opsomer, 2013), resulting in increased circulating non-
esterified fatty acids (NEFA) in blood (Adewuyi et 
al., 2005). Nonesterified fatty acids can be used as an 
energy source in the peripheral tissues, sparing glucose 
for milk production (Herdt, 2000). Nonesterified fatty 
acids are cleared in the liver through several pathways: 
(1) complete oxidation, (2) partial oxidation, or (3) 
re-esterification into triglycerides (TG; Grummer, 
1993). Triglycerides are stored in the hepatocytes and 
exported as very-low-density lipoproteins (VLDL), 
which can serve as an energy source in other tissues. 
Through partial oxidation, ketone bodies are produced 
(acetate, BHB, and acetone) and, as NEFA, can be 
used as an energy source in other tissues. Partial oxi-
dation is promoted when there is not enough energy 
available to sustain maintenance and production, a 
phenomenon that is often the case in periparturient 
cows (Herdt, 2000). During complete oxidation, NEFA 
enter the tricarboxylic cycle producing energy for the 
liver (Drackley, 1999).

The liver has limited capacity to export VLDL and 
to complete oxidize NEFA. Thus, NEFA are mostly 
metabolized through partial oxidation, resulting in 
increased serum BHB levels (Drackley, 1999; Herdt, 
2000). Cows that fail to regulate adipose tissue mobili-
zation or fail to export VLDL from the liver are likely 
to develop fatty liver and ketosis, characterized by high 
levels of ketone bodies in blood (Herdt, 2000). High 
hepatic NEFA oxidation also decreases appetite (Allen 
et al., 2009), potentially contributing to NEB.

More recently, the link between energy balance and 
immune function during the transition period has been 
further explored. The list of hormones and metabolites 
and the pathways involved in inflammation are numer-
ous and have been reviewed elsewhere (Bradford et 
al., 2015; Aleri et al., 2016; Trevisi and Minuti, 2018). 
Increased immune response, which often results in in-
flammation, facilitates calving and is responsible for 
placental detachment (Kimura et al., 2002; Mordak and 
Stewart, 2015), so some inflammation is beneficial, but 
prolonged systemic inflammation is likely detrimental 
to cow health (Bradford et al., 2015).

During the transition period acute lipolysis stimu-
lates a proinflammatory response in the adipose tis-
sue (Contreras et al., 2015). In the liver, increased 
oxidation of NEFA increases the production of reactive 
oxygen species, which in turn stimulates the transcrip-
tion of proinflammatory cytokines (Sordillo et al., 2009; 
Gessner et al., 2013). After calving uterine tissues are 
disrupted, but the risk of pathological bacteria reaching 
the endometrium remains high because the cervix is 
still open. This is ideally counteracted by an inflamma-
tory response that can fight infections and stimulate 
tissue recovery (Chapwanya et al., 2012).
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The events taking place in the adipose tissue, liver, 
and uterus likely result in the cows experiencing system-
ic inflammation during the transition period (Bradford 
et al., 2015), that combined with the energy required 
to mount an effective immune response (Kvidera et al., 
2017), contributes to the energy deficit.

Recent studies link the dry-off phase with systemic 
inflammation (Mezzetti et al., 2020), nutrient metabo-
lism, and oxidative stress (Putman et al., 2018), which 
have been proposed to influence the subsequent cascade 
of physiological events during the prepartum period 
(Mezzetti et al., 2021).

Behavioral Changes During the Transition Period

Most of the work assessing transition period behav-
ior has been conducted in animals under zero-grazing 
systems. Grummer et al. (2004) looked at data from 
several studies to explore the pattern of DMI during 
the prepartum period with the objective of describing 
DMI curves (Hayirli et al., 2003). They concluded that 
DMI starts decreasing 3 wk precalving with the great-
est drop in DMI in the days close to calving, though 
the authors also noted that heifers and cows that were 
considered thin (BCS <3.5) had more consistent DMI 
during the precalving period, reducing intake only 
a couple of days before calving (Hayirli et al., 2002; 
Hayirli and Grummer, 2004). Similarly, other studies 
have found that cows that did not succumb to disease 
maintained consistent DMI throughout most of the pre-
partum period, showing marked DMI reduction only in 
the days before calving (Hammon et al., 2006; Huzzey 
et al., 2007; Goldhawk et al., 2009). Rumination shows 
a similar pattern as that of DMI, with a marked drop 
on the day of calving and a gradual increase thereafter 
(Kaufman et al., 2016a). There is also evidence that 
restlessness (i.e., transitioning from standing and lying) 
increases in the days around calving; on the day of 
calving cows increase the time they spend standing by 
an average of approximately 2 h (Huzzey et al., 2005).

There are several techniques to estimate individual 
DMI in herbivores (Dove and Mayes, 2006), including 
lactating grazing cows (Lahart et al., 2019; Méndez et 
al., 2020). To our knowledge, no data have been pub-
lished on changes in DMI of grazing animals during 
the transition period. Once these data are collected it 
could be used to consolidate our existing DMI models. 
Lying behavior and daily steps (measure of activity) 
have been assessed from 3 wk before to 5 wk after calv-
ing in a few grazing herds in New Zealand. Cows are 
consistent in their daily lying times up to 3 d before 
calving followed by a marked drop until nadir at the 
time of calving; although lying times are lower than 
precalving, there is a short increase in lying time a day 

after calving but then time spent lying levels out and 
remains constant. Lying bouts followed an inverse pat-
tern to that observed for lying time. Also, fewer daily 
steps are taken during the precalving period compared 
with the postcalving period with the increase taking 
place beginning 2 d before calving to 1 d after, after 
which it levels out again (Hendriks et al., 2019).

Management Changes for Transition Cows

There are differences in how veterinarians and farm-
ers define the transition period (Mills et al., 2020). 
These differences may be a result of how the dairy herd 
is being managed (e.g., pen changes, diet changes). The 
rationale that has led to these management recommen-
dations is presented below.

Research done in zero-grazing systems has focused on 
nutritional strategies to avoid over-conditioning (obe-
sity) during the dry period (prepartum) and to prevent 
clinical hypocalcemia (Goff, 2006). Briefly, obese cows 
are likely to develop “fat cow syndrome,” an affliction 
with a high incidence of metabolic and infectious dis-
eases and mortality, particularly during the first 2 wk 
postpartum (Morrow, 1976). To prevent obesity, some 
recommendations suggest using low-energy diets during 
the dry period (NRC, 2001). However, when low-energy 
diets are fed prepartum cows have lower DMI (Hayirli et 
al., 2002), so some have argued that higher energy diets 
should be used prepartum to compensate and prevent 
the detrimental effects of a long period of NEB (Hayirli 
and Grummer, 2004). However, feeding high-energy di-
ets (as a means to increase DMI) during the prepartum 
phase is known to be associated with a greater depres-
sion in DMI before calving and lower DMI after calving 
compared with cows fed diets to meet their nutrient 
requirements (Janovick and Drackley, 2010).

Increased understanding of the role of parathyroid 
hormone, vitamin D, and blood pH on calcium metabo-
lism has led to the development of high anion diets, 
so called “DCAD diets,” and also diets low in calcium 
(Goff, 2006). In zero-grazing herds the DCAD diets are 
usually fed during the late dry period (3 to 4 wk before 
calving). Recent meta-analyses concluded that DCAD 
is effective at reducing the risk of hypocalcemia and 
increasing milk production (Lean et al., 2019; Santos 
et al., 2019). In grazing herds supplementation and 
effectiveness of DCAD diets is often hindered given dif-
ficulties in managing groups of cows at different stages 
of lactations; for instance, far-off and close-up cows are 
often commingled (Sepúlveda-Varas et al., 2013), al-
lowed to graze on high K pastures, and have higher 
rumen pH (Goff, 2014), making it difficult to reach 
targeted cationic balance. Nonetheless, some studies in 
grazing herds have been successful in elevating post-
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partum serum Ca levels through the use of prepartum 
DCAD diets (Roche et al., 2003; Melendez et al., 2018).

To facilitate feeding different diets during the dry pe-
riod in zero-grazing systems, cows are often regrouped 
according to predicted calving date, with the first re-
grouping taking place 3 to 4 wk prepartum. In the days 
before parturition cows are moved to the maternity pen 
where they will calve and then moved to the hospital or 
“fresh” pen for several days until again regrouped into 
the main lactating herd. In contrast, most grazing sys-
tems keep dry cows as a single group that may or may 
not receive dietary supplements as calving approaches.

In addition to feeding strategies, other management 
factors have been studied exclusively in zero-grazing 
systems, such as the effect of regrouping and stocking 
density in relation to changes in behavior, immunity, 
and transition period diseases. We further discuss this 
literature below (but see also Sepúlveda-Varas et al., 
2013; Proudfoot and Habing, 2015; and Chebel et al., 
2016). Little research has focused on the management 
of cows during the transition in grazing systems (see 
review by Kay et al., 2015).

EPIDEMIOLOGY OF TRANSITION PERIOD DISEASES

In this review we focus on retained placenta (RP), 
metritis, and subclinical ketosis (SCK) but we also 
include mastitis and hypocalcemia where appropriate. 
We included these diseases as they are the most preva-
lent, or exclusively prevalent (e.g., RP), within the 
transition period. Other transition problems include 
displaced abomasum (DA), but given the lack of spe-

cific epidemiological research on this malady and also 
because DA seems to be a secondary issue associated 
with other transition diseases (e.g., SCK; McArt et al., 
2012), we have not included it in this review.

One of the main challenges in reviewing the epidemi-
ology of cattle diseases is the range of disease diagnosis 
definitions. In this review we decided to retain the 
definitions used by the authors because reinterpreting 
the data based on a fixed definition for each selected 
disease would be impossible; moreover, most of the pub-
lications did not provide access to the raw data. That 
said, we saw a range of definitions for metritis, RP, 
and SCK. In brief, the definition for metritis included 
foul watery vaginal discharge with or without fever and 
with or without signs of systemic illness between 0 to 
21 DIM. Retained placenta was defined as failure to 
pass fetal membranes within 12 or 24 h after calving 
and SCK was defined as blood BHB >0.96 mmol/L 
[ranging from 0.96 mmol/L (Ribeiro et al., 2013) to 
1.4 mmol/L (Duffield et al., 2009)] or milk BHB >0.15 
mmol/L from 0 to 21 DIM. For both metritis and SCK, 
blood sampling times ranged from multiple times per 
week to once during the 3 wk after calving. This varia-
tion in sampling is conveyed in how we report the data 
in Table 1, as multiple measures allow for estimative 
of incidence, whereas from cross-sectional data only 
prevalence can be estimated (except for RP).

High milk production is possible in both zero-grazing 
and pasture-based systems but between-system differ-
ences likely result in different risk factors for transition 
diseases. A summary of the occurrence of the most 
common transition period diseases in zero-grazing and 
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Table 1. Mean and range in incidence and prevalence estimates across studies documenting 3 common transition period diseases, separately 
for zero-grazing and grazing-based systems

Disease1

Production system2

Zero grazing

 

Grazing

Mean Range (min–max) No. of studies Mean Range (min–max) No. of studies

Metritis3            
  Incidence 21.5 16.7–29.7 6 20.7 17.3–25 2
  Prevalence 18.7 NA 1 7.7 5.3–11.2 2
RP4            
  Incidence 13.1 8.9–18.7 4 4.3 1.7–13.9 5
SCK5            
  Incidence 37.4 19.7–43.2 5 49 16.6–66.5 2
  Prevalence 24 10–58.8 12 24.8 10.8–35.4 5
1The mean of disease incidence and prevalence was weighted by the number of cows assessed in each study. The list of studies used to generate 
this table can be found in Supplemental File S1 (https:​/​/​doi​.org/​10​.5683/​SP3/​Q3WGOI, Daros et al., 2022).
2Zero grazing includes studies on tiestall, freestall, and other loose housing systems. Grazing includes seasonal and year-round intensive grazing 
systems. Min = minimum; max = maximum.
3A range of metritis definitions was found in the assessed studies and included foul watery vaginal discharge with or without fever and with or 
without signs of systemic illness.
4Retained placenta (RP) defined as failure to pass fetal membranes within 12 or 24 h after calving.
5Subclinical ketosis (SCK) defined as blood BHB >0.96 mmol/L or milk BHB >0.15 mmol/L from 0 to 21 DIM.

https://doi.org/10.5683/SP3/Q3WGOI
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grazing systems is provided in Table 1; these results 
suggest that disease risk is similar in the 2 systems, 
although specific risk factors may vary as we review 
below. Risk factors are separated into cow and herd 
level. Where available, controlled studies that have fo-
cused on the causal relationship between risk factor and 
disease will be highlighted.

Cow-Level Risk Factors

Body Condition. Body condition is correlated with 
the amount of adipose tissue (Gregory et al., 1998), mak-
ing it useful for assessing cow condition and longer term 
nutritional status. In both grazing (Roche et al., 2007a) 
and zero-grazing (Hoedemaker et al., 2009; Zachut and 
Moallem, 2017) systems, the BCS of cows changes dra-
matically from calving to peak lactation (usually from 
50 to 100 DIM), with cows losing condition due to NEB 
in the first weeks following parturition. The control-
ling mechanisms of body fat mobilization include both 
homeorhetic mechanisms (described above), which are 
mainly dependent on genetic traits (e.g., Zachut and 
Moallem, 2017) and homeostatic mechanisms, that 
are highly influenced by environmental factors, such 
as diet (e.g., Roche et al., 2006) and feed availability. 
The BCS at calving, nadir BCS in early lactation, time 
from calving to nadir BCS, and amount of BCS lost 
from calving to nadir have all been associated with 
lower productive and reproductive performance, and 
disease occurrence (grazing: Roche et al., 2007b, 2015; 
zero grazing: Hoedemaker et al., 2009). The BCS at 
calving is associated with nadir BCS and BCS loss in 
early lactation (grazing: Roche et al., 2007b; zero graz-
ing: Chebel et al., 2018), making this parameter useful 
to predict cows at risk of developing transition period 
disease in grazing and zero-grazing cows.

In cows managed under zero-grazing systems, moder-
ate to high BCS (BCS ≥3.25) at calving is associated 
with metabolic disease, especially SCK (e.g., McArt et 
al., 2013; Daros et al., 2020), whereas low BCS (≤3.0) 
at calving is associated with uterine diseases, mainly 
RP and metritis (e.g., Duffield et al., 2009). A simi-
lar relationship has been found in grazing herds (e.g., 
Roche et al., 2013; Daros et al., 2017). In controlled 
studies conducted in zero-grazing herds, higher BCS 
(>3.5) cows had reduced DMI after calving (Hayirli 
et al., 2002). In grazing herds a similar pattern was 
observed; cows with high BCS in the prepartum period 
lost more weight and body condition in the weeks after 
calving (Roche et al., 2013). Under experimental condi-
tions, again in zero-grazing and grazing herds, fatter 
cows had lower activation of immune function–related 
genes and altered proteomic profile indicating an acute 
inflammatory response (Crookenden et al., 2017; Ghaf-

fari et al., 2020), linking high fat mobilization and 
decreased immune function. Unfortunately, the causal 
link between low BCS (<3.0) at calving and uterine 
diseases remains unknown. Low BCS may reflect a cur-
rent subclinical disease, but more work is needed to ad-
dress this hypothesis. Alternatively, low BCS at calving 
may reflect BCS loss from dry-off to calving. Several 
studies have uncovered the association between BCS at 
dry-off and precalving BCS loss. In general, cows that 
are fatter (BCS ≥3.5) at the end of lactation eat less 
during the dry period (Daros et al., 2021) and are more 
likely to lose BCS and subsequently develop uterine 
diseases (Chebel et al., 2018; Daros et al., 2020). This 
idea is supported by experimental work done on grazing 
(Roche et al., 2013) and zero-grazing herds (Schuh et 
al., 2019) assessing the effect of dietary management to 
achieve targeted BCS during the dry period; dry cows 
that were induced to have medium BCS at the end of 
lactation had lower NEFA and BHB levels compared 
with cows managed to have higher BCS (Roche et al., 
2013, 2015; Schuh et al., 2019).

Breed. Few studies have found breed to be a risk 
factor for transition period diseases. In Canada, in 
zero-grazing systems, Jersey cows were found to have 
a higher prevalence of SCK compared with Holsteins 
cows (Tatone et al., 2017). In grazing systems, Jerseys 
have been found to have increased odds of SCK in at 
least one study (Daros et al., 2017). Conversely, in 2 
seasonal-calving pasture-based dairies in Florida, Jer-
sey cows had a lower prevalence of SCK but a higher 
prevalence of subclinical hypocalcemia compared with 
Holstein cows (Ribeiro et al., 2013). A large multi-
country European study found no evidence of breed 
differences in SCK prevalence (Berge and Vertenten, 
2014); it should be noted that in this study most herds 
were zero grazing and these systems tended to have only 
a single breed. With single breed herds some unknown 
farm variables may act as confounding factors, making 
it difficult to draw conclusions about breed difference. 
Ideally, differences between breeds should be studied 
within herd.

Why disease incidence should vary across breeds is 
not clear. It has been suggested that Jersey cows have 
lower levels of 1,25(OH)2D receptors in their intestines 
compared with Holsteins cows, making Jerseys more 
susceptible to hypocalcemia (Goff, 2014). However, 
some field studies failed to detect this relationship 
(Quiroz-Rocha et al., 2009; Chapinal et al., 2011; Daros 
et al., 2017).

Parity. Primiparous cows have a higher incidence of 
uterine disease and a lower incidence of metabolic dis-
ease during the transition period when compared with 
multiparous cows (e.g., Giuliodori et al., 2013). In most 
dairy production systems, heifers calve around 24 mo 
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of age, increasing the chances of calving difficulty (i.e., 
dystocia) due to their narrower birth canal compared 
with fully grown cows (Mee, 2008). Dystocia is reported 
across different production systems and breeds and re-
sults in increases in RP and metritis. Although some 
studies have identified a higher risk for metritis in pri-
miparous animals (zero grazing: Chapinal et al., 2011; 
Ghavi Hossein-Zadeh and Ardalan, 2011), others have 
found no association between parity and metritis risk 
(grazing and zero grazing: Dubuc et al., 2010; Daros et 
al., 2017; Vallejo-Timaran et al., 2021). Some insights 
are provided in an observational study on seasonally 
housed cows in Europe where a quadratic relationship 
between parity and metritis was noted. The authors 
speculate that this may be explained both primiparous 
and older cows (>3 lactations) being at higher risk of 
metritis, but only when indoors and when afflicted with 
a comorbidity (Bruun et al., 2002). Neutrophil function 
of older cows is impaired compared with younger cows 
(Gilbert et al., 1993), potentially explaining why cows 
of third parity or higher are more susceptible to infec-
tious diseases. Multiparous cows have reduced numbers 
of parathyroid hormone and 1,25(OH)2D receptors in 
the kidney and intestines, respectively, hence the higher 
incidence of hypocalcemia in older cows (Goff, 2014). 
From the 21 studies (see Supplemental File S1, https:​
/​/​doi​.org/​10​.5683/​SP3/​Q3WGOI, Daros et al., 2022) 
on SCK occurrence compiled for this review, 3 did not 
include parity in their analysis, one failed to detect an 
association between parity and SCK, and one found 
that primiparous cows were at increased risk of SCK. 
The remaining 16 studies reported that higher parity 
animals were at increased risk of SCK. Despite numer-
ous studies identifying increased parity as a risk factor, 
no study has assessed why multiparous cows have a 
higher prevalence of SCK compared with primiparous 
cows. The last third of gestation is the period of greatest 
accumulation of energy in the fetus and gravid uterus 
(Bell et al., 1995). Thus, the mere fact that dairy cows 
are both lactating and gestating at the same time may 
place multiparous cows at greater risk for experiencing 
NEB. Cows of higher parity may mobilize more lipids 
to compensate for NEB in early lactation (Coffey et al., 
2004), potentially explaining the positive relationship 
between parity and SCK. In zero-grazing systems the 
dynamics of BHB are different between parity groups, 
with primiparous cows having higher BHB at the begin-
ning of the lactation followed by a gradual decline, and 
multiparous cows showing a more continuous increase 
from the day of calving until this peaks at 9 to 11 DIM, 
followed by a gradual decrease (Santschi et al., 2016; 
Tatone et al., 2017). To our knowledge no study has 
attempted to provide further insights as to why this 

difference in the epidemiology of SCK of primiparous 
and multiparous cows exists.

Age at First Calving, Gestation, and Dry Pe-
riod Length. Heifers that calve at 25 mo of age or 
older, and cows having longer dry periods (>70 d), 
have higher prevalence of SCK (Tatone et al., 2017). 
These factors are associated with higher BCS at calving 
(Roche et al., 2009). Some experimental research has 
manipulated dry period length from 0 to 60 d in zero-
grazing herds, but findings are inconclusive with the 
exception that prolonging lactation until calving (i.e., 
no dry period) seems to improve metabolic health (van 
Knegsel et al., 2014; van Hoeij et al., 2017) without 
detrimental effects on uterine health postpartum (Chen 
et al., 2017). The majority of these studies have been 
performed in zero-grazing systems with high producing 
Holstein cows and thus may not extend to lower pro-
ducing cows on pasture. There have been no published 
studies on the effect of dry period length on metabolic 
diseases and metritis in pasture-based systems, but a 
longer dry period (≥112 d) was associated with a high-
er incidence of clinical mastitis after calving in grazing 
herds in New Zealand (Bates and Dohoo, 2016). This 
could have been driven because the intramammary dry-
cow antibiotic has a finite period of efficacy; when anti-
biotics are combined with teat sealants, cows with long 
dry period have lower postcalving mastitis incidence 
(Berry and Hillerton, 2007).

Shorter gestation length has been associated with 
higher incidences of RP (Muller and Owens, 1974); it 
is likely that in shortened gestations the placentomes 
are not fully matured (Laven and Peters, 1996) and the 
hormonal balance required for placental detachment is 
not fully in place (Beagley et al., 2010). Heat stress is 
associated with short gestations (Tao and Dahl, 2013); 
however, RP incidence is higher during cooler months 
across production systems (e.g., Quiroz-Rocha et al., 
2009). More details on seasonal effects are provided 
below.

Milk Yield and Components. There is no evidence 
of an association between milk production and the like-
lihood of cows developing metritis or RP (Ingvartsen et 
al., 2003). Tatone et al., (2017) found that herd-level 
milk production and milk fat percentage before dry-
off were negatively associated with SCK. It is likely 
that herds that produce more milk also have better 
general management and thus may have implemented 
more effective ketosis prevention protocols. However, 
at the cow-level, previous lactation milk yield was not 
associated with metritis, RP, or SCK in a study of 6 
zero-grazing herds (Daros et al., 2020).

Mastitis is the only disease that is consistently posi-
tively associated with milk production, both in graz-
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ing (Bates and Dohoo, 2016) and zero-grazing herds 
(Ingvartsen et al., 2003). The exact mechanism for this 
association has not been fully elucidated. Although In-
gvartsen et al. (2003) suggests that this may be related 
to teat sphincter issues and that high volume of milk 
may wash out more of the protective keratin layer.

Physiological Parameters. All studies reported in 
this section were performed in zero-grazing herds. Cir-
culating NEFA levels can serve as a proxy for changes 
in energy balance during the transition period (e.g., 
Dubuc et al., 2010; Ospina et al., 2010), with SCK 
showing the strongest correlation with NEFA (Ospina 
et al., 2013). Unfortunately, there is no cow-side test 
for NEFA assessment (Overton et al., 2017). Serum or 
milk BHB have both been used to identify cows for 
clinical ketosis, and at risk for displacement abomasum 
and uterine disease, but the predictive value of BHB 
for transition period diseases is higher during the post-
partum period (Overton et al., 2017) when it is often 
too late to implement prevention strategies. However, 
the availability and reliability of cow-side tests for BHB 
make this a powerful tool to improve transition period 
management (Ospina et al., 2013).

A few other markers show promise as predictors of 
transition period disease. Inflammation markers, such 
as haptoglobin, have been associated with transition 
period disease; however, the predictive value of these 
markers is greater postpartum (Dubuc et al., 2010; 
Huzzey et al., 2015). Studies investigating metabolo-
mics and proteomics have identified a range of param-
eters (e.g., serum lactate and IL-6 for metritis, and 
boron, aluminum, and potassium for SCK) associated 
with metabolic and infectious diseases (Dervishi et al., 
2016b; Zhang et al., 2017). Parameters associated with 
immune function and inflammation were different in 
healthy and affected cows in the postpartum period 
as much as 8 wk before calving (Dervishi et al., 2016a; 
Trevisi and Minuti, 2018). Although metabolomic stud-
ies are promising, the work to date suffers from poor 
replication with the majority of studies making use of 
very few animals (Zhang et al., 2017; Dervishi et al., 
2018). Overall, these metabolic changes indicate that 
the “transition period” should be considered as starting 
much before what is typically considered.

Italian researchers have proposed the use of indexes, 
such as the liver activity index, liver functionality 
index, and postpartum inflammatory response index, 
to categorize cows at risk for transition period disease 
(see review: Trevisi and Minuti, 2018). These indexes 
combine several blood inflammation markers and high 
values for these indexes are associated with lower re-
productive performance. However, most of this research 
has been limited to a few zero-grazing experimental 
herds in Italy (Trevisi et al., 2012), so the use of these 

indexes across herds should be viewed with caution, 
especially as immune function markers may be herd 
dependent (Zecconi et al., 2018). Although these in-
dexes were designed for postpartum measurements, 
recent findings of a variety of markers during the dry 
period indicate the possibility of new indexes (Trevisi 
and Minuti, 2018).

Behaviors and DMI. Dry matter intake is a func-
tion of feeding behavior, specifically feeding rate (meal 
size/meal time) and total time spent feeding (number 
of meals × meal time; Nielsen, 1999; DeVries et al., 
2003b). Because it is hard to measure these variables in 
grazing systems, most of the studies on the association 
between feeding behavior and transition disease were 
conducted in zero-grazing systems.

Feeding behaviors have been used to identify cows at 
risk for metritis (Urton et al., 2005; Huzzey et al., 2007) 
and at risk for clinical ketosis and SCK (González et 
al., 2008; Goldhawk et al., 2009). In these studies cows 
that were sick had lower daily feeding times and DMI 
during the prepartum period. Conversely, DMI was 
higher in the weeks prepartum for cows that developed 
subclinical hypocalcemia compared with cows that had 
normal levels of calcium on the day of calving; daily 
feeding time was not reported (Jawor et al., 2012). To 
our knowledge there are no studies assessing prepartum 
DMI and transition disease risk in grazing herds, but 
the use of rumination monitors in grazing cattle has 
shown promise as a surrogate measure to assess feeding 
behavior in this system. In one very recent study, graz-
ing cows with metritis had lower daily rumination times 
in the prepartum period compared with cows that did 
not developed metritis, but this association was only 
present during the autumn period and when temper-
ature-humidity index was above 68 (Held-Montaldo et 
al., 2021).

In a zero-grazing herd, Schirmann et al. (2016) also 
found decreased DMI and feeding time per day dur-
ing the prepartum period, but only for cows that were 
diagnosed with metritis and SCK at the same time and 
not for cows diagnosed with metritis only. Dry mat-
ter intake may be intrinsically correlated with levels of 
circulating NEFA (Allen et al., 2009), which has been 
described as a major risk factor for ketosis and metri-
tis (Ospina et al., 2010). The relation between NEFA, 
DMI, BHB, and metritis has been previously described 
by Hammon et al. (2006) who reported that high NEFA 
levels in the week prepartum were associated with de-
creased DMI, which in turn was associated with lower 
immune function and the development of metritis and 
SCK. These results suggest that studies using prepar-
tum feeding time to predict disease should also measure 
energy balance markers or at least control for changes 
in BCS during the dry period (Daros et al., 2021).
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In zero-grazing systems standing and lying behavior 
prepartum are associated with dystocia (Proudfoot 
et al., 2009a), subclinical hypocalcemia (Jawor et al., 
2012), metritis (Neave et al., 2018), and ketosis (Itle 
et al., 2015), but not SCK (Kaufman et al., 2016b). 
The direction of these relationships may be disease 
specific. For example, cows diagnosed with dystocia 
exhibit more standing or lying bouts during the day 
of calving (Proudfoot et al., 2009a). For other diseases, 
such as ketosis and metritis, changes in standing or 
lying behavior before calving may reflect an indirect 
association. It has been speculated that cows that de-
velop ketosis are disproportionally of low social rank 
(i.e., subordinate animals) and thus avoiding agonistic 
interactions at the feed bunk by waiting longer to feed 
(Itle et al., 2015). Lameness has been associated with 
higher odds of transition diseases in zero-grazing sys-
tems (Daros et al., 2020) and affects lying behavior (Ito 
et al., 2010); hence, this could explain the association 
between standing behavior and the disease. In graz-
ing systems, lameness does not have a major effect on 
standing behavior (Thompson et al., 2019) and only 
weak associations between standing behavior and tran-
sition diseases after controlling for lameness have been 
found in grazing herds (Sepúlveda-Varas et al., 2014).

Social behaviors have also been assessed in relation 
to transition period diseases in cows under zero-grazing 
systems (see reviews: Proudfoot et al., 2012; Sepúlveda-
Varas et al., 2013). Decreased agonistic behavior at the 
feed bunk is usually associated with increased risk of 
metritis and SCK (Huzzey et al., 2007; Goldhawk et 
al., 2009; Neave et al., 2018; but see also: Sahar et al., 
2020), though the causal mechanisms for these findings 
have not been explored. Social behavior is dependent 
on environmental factors and the animal’s social rank. 
Subordinate cows may have higher levels of glucocorti-
coids (Huzzey et al., 2012), which impair immune func-
tion. Few studies have considered social rank as risk 
factor for transition disease.

Agonistic behavior and feeding synchrony have been 
identified as a way of studying feeding strategies prepar-
tum and assessing if different strategies are associated 
with metritis risk in a zero-grazing experimental herd; 
although the relationship between such strategies and 
metritis is not straightforward, it seems that metritic 
cows may change their feeding strategy more often than 
healthy cows (Foris et al., 2020).

Prepartum social behavior has been rarely studied in 
grazing cows. Because competition for feed is expected 
to be lower in grazing systems, we suggest that the 
association between social status and disease may be 
less evident for grazing cows. However, competition for 
water access can be high in grazing systems (Coimbra 
et al., 2012). In an observational study on small-scale 

grazing herds, restricted water access was associated 
with a higher risk of SCK (Daros et al., 2017). Monitor-
ing drinking behavior in grazing cows may be a way of 
identifying individuals at risk.

Herd-Level Risk Factors

Management Factors. Cows show synchronized 
behaviors and have a complex social hierarchy (DeVries 
et al., 2003a; Val-Laillet et al., 2008). Regrouping and 
overcrowding increase agonistic interactions, disrupt-
ing feeding and lying behavior in zero-grazing herds 
(Schirmann et al., 2011). There is a sharp increase in 
agonistic interactions in the first day following regroup-
ing that quickly resume to baseline levels after few days 
(von Keyserlingk et al., 2008). Conversely, overcrowding 
is a more chronic stressor and cows take longer to adapt 
(Proudfoot et al., 2009b). Overcrowding has been as-
sociated with increased glucocorticoids (Huzzey et al., 
2012; Fustini et al., 2017), suggesting that overcrowd-
ing during the prepartum period may be particularly 
detrimental to cow health. The effect of overcrowding is 
greater in subordinate than in dominant cows (Huzzey 
et al., 2012). The effect of regrouping and stocking 
density on physiological parameters, disease incidence, 
reproductive, and milk performance of cows in zero-
grazing systems has been reviewed at length elsewhere 
(Chebel et al., 2016). In brief, weekly regroupings dur-
ing the dry period did not affect energy and immune 
status, reproductive and production performance, or 
disease incidence compared with cows that stayed in 
a stable group throughout the dry period (Silva et al., 
2013a,b). The effect of stocking density (80 vs. 100%) 
during the dry period on feeding and standing behav-
ior were reported (Lobeck-Luchterhand et al., 2015); 
however, these changes did not translate into higher 
incidence of postpartum disease (Luchterhand et al., 
2016). The researchers calculated the stocking density 
at feed bunk based on a 61-cm head space, that is, feed 
bunk fitted with 61-cm-wide head locks, which may be 
considered as providing more than the standard feed 
bunk space for Jersey cows, given their smaller stature 
compared with Holsteins, which were used in much of 
the work done on feeding behavior (e.g., DeVries et al., 
2003b).

Few other management practices have been associ-
ated with transition period disease. Early mastitis 
(clinical cases within 30 d of calving) is affected by 
different management strategies during the dry period, 
such as dry-cow therapy strategies and cleaning rou-
tine (Berry and Hillerton, 2007; Green et al., 2007). 
Cows housed on pasture during the dry period benefit 
from rotational grazing, possibly by having cleaner ly-
ing surfaces, whereas cows kept indoors benefit from 
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routine stall and calving pen cleaning (Green et al., 
2007). These results highlight the importance of clean 
lying surfaces to control mastitis. Cleaner farms also 
experienced fewer cases of metritis in a study of small-
scale grazing herds (Daros et al., 2017).

One study reported that cows in herds with no access 
to pasture had higher odds of developing metritis (Bru-
un et al., 2002). Conversely, another study reported 
that cows allowed to graze in the summer had a higher 
prevalence of SCK (Berge and Vertenten, 2014). An 
experimental study by Olmos et al. (2009), comparing 
health of housed and grazing cows, found that grazing 
cows had higher BHB and lower rumen fill compared 
with housed cows. Combined, these results suggest that 
grazing cows may experience longer periods of NEB, 
explaining the relatively high prevalence of SCK 3 to 
5 wk after calving in some grazing herds (Compton et 
al., 2015).

Experimental studies varying on management prac-
tices are difficult to perform and require interventions 
that last for long periods with large numbers of cows. 
Epidemiological studies require a large number of farms 
to capture the variability in management practices with 
sufficient replication (i.e., enough farms using the same 
management practice). Large epidemiological studies 
have been carried out in Europe and North America 
(e.g., Chapinal et al., 2011; Berge and Vertenten, 2014) 
where most cows are kept indoors; such studies are still 
required to identify management practices associated 
with transition disease risk in grazing herds.

Ambient Factors. In zero-grazing herds there are 
seasonal effects on transition period disease incidence. 
In Europe, during the spring months SCK incidence 
tends to be higher than in winter months (Suthar et 
al., 2013; Berge and Vertenten, 2014; Vanholder et al., 
2015). In Canada there is a high incidence of SCK dur-
ing May, but not for the other spring months (Tatone 
et al., 2017). Season is also a risk factor for metritis and 
RP, with higher incidences during the winter months 
(Muller and Owens, 1974; Bruun et al., 2002; Quiroz-
Rocha et al., 2009; Chapinal et al., 2011).

Most of the studies in grazing herds did not report an 
effect of season on transition period disease. However, 
rainfall at calving is associated with higher odds of 
clinical mastitis in the first 90 d postpartum in grazing 
systems in New Zealand (Bates and Dohoo, 2016).

Association Between Different Diseases  
During the Transition Period

As discussed previously, early fat mobilization and 
uncontrolled inflammation can lead to disease. For 
cows managed either in grazing or zero-grazing systems 
increased levels of NEFA overwhelm liver capacity to 

metabolize fat, impairing liver function causing fatty 
liver, SCK, which may lead to the development of clini-
cal ketosis and DA. High levels of circulating BHB and 
liver inflammation negatively affect the immune sys-
tem, increasing susceptibility to infectious diseases such 
as metritis and mastitis. At the same time, low calcium 
level impairs immune system functionality leading to 
RP (Kimura et al., 2002, 2006). There is also a high 
energetic cost to mounting an inflammatory response 
(Kvidera et al., 2017), further exacerbating NEB. 
Moreover, in zero-grazing herds the sudden change from 
high-fiber, low-energy to low-fiber, high-energy diets 
common around calving likely contributes to SARA, 
which in turn increase rumen wall permeability (“leaky 
gut”), allowing endotoxins to enter the bloodstream 
resulting in an inflammatory response (Zebeli et al., 
2015). Together this research highlights the complex-
ity of events and how one disease may contribute to 
another.

Lameness has been considered one of the main health 
problems affecting cows in zero-grazing systems (So-
lano et al., 2015; Randall et al., 2019) but has also been 
identified as a highly prevalent issue in grazing herds 
(Ranjbar et al., 2016; Bran et al., 2018). We argue that 
lameness has been underappreciated as a risk factor 
for transition diseases. The associations between lame-
ness and lower feed intake (Bach et al., 2007), increased 
levels of haptoglobin (Tadich et al., 2013), and the high 
incidence of lameness during the dry period (Daros et 
al., 2019) are all evidence of this potential association.

Only a few studies have addressed the link between 
lameness and transition period disease (Calderon and 
Cook, 2011; Daros et al., 2020). Calderon and Cook 
(2011) followed lame cows between 1 to 3 wk before 
calving and found that they had higher blood levels of 
BHB compared with nonlame cows. These authors also 
reported that lame multiparous cows in the close-up 
period lay down longer and suggested that these cows 
might have given up feeding time to spend more time 
lying time. Multiple studies on indoor-housed cows re-
port that lame cows lie down for longer, spend less time 
feeding, and have lower DMI compared with nonlame 
counterparts (Bach et al., 2007; Ito et al., 2010; Miguel-
Pacheco et al., 2014). Lameness prevalence in the 2 
wk before calving was associated with increased risk 
of being treated for transition period diseases within 
30 d of calving (Vergara et al., 2014). In a longitudinal 
study in zero-grazing herds, the relationship between 
lameness, time spent feeding, and development of tran-
sition disease was explored; cows that developed lame-
ness or were chronically lame during the dry period 
had decreased feeding time and were more likely to de-
velop transition diseases, after controlling for changes 
in BCS, parity, previous milk yield, and other factors 
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(Daros et al., 2020). We are not aware of similar stud-
ies in grazing systems but argue that the mechanisms 
linking lameness to transition period disease are likely 
to be similar.

FINAL REMARKS AND FUTURE DIRECTIONS

For the transition period diseases that we reviewed 
it is evident that the occurrence is high in both grazing 
and zero-grazing intensive systems. We identified risk 
factors for these transition diseases in both grazing and 
zero-grazing systems that seem to develop earlier than 
what is normally considered the transition period and 
suggest that the transition period should be considered 
more fluidly, focusing on preventive health protocols 
starting at different time points depending upon the 
risk factors at play.

Future intervention studies should test practices that 
improve conditions in the early dry period. As for zero-
grazing herds, studies should include nutritional strate-
gies for mid- to late-lactation cows that are overcondi-
tioned and following up lameness cases more frequently 
as a way of reducing lameness incidence and chronic 
cases during the dry period. Research on grazing sys-
tems should focus on dry period management and 
mitigating environmental risks, including heat stress 
and wet conditions. Lameness in grazing herds is often 
overlooked and prevention strategies for grazing herds 
should also be investigated. We also highlight other risk 
factors that are not manageable such as breed, parity, 
or season. Understanding these factors may aid in the 
data analysis of future studies to avoid confounding and 
misinterpretation of results.

Although cross-sectional studies help estimate the 
prevalence of health issues, they contribute little to 
the understanding of causal relationships between risk 
factors and disease. We urge more longitudinal studies 
to measure the effect of managing risk factors in reduc-
ing disease incidence in both grazing and zero-grazing 
systems.
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